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Diets rich in fruits and vegetables delay the onset of 
many age-related diseases, and contain a complex 
mixture of antioxidants (including ascorbate, caroten- 
oids, vitamin E and other phenolics such as the flavo- 
noids). However, diet also contains pro-oxidants, 
including iron, copper, H202, haem, lipid peroxides 
and aldehydes. Nitrite is frequently present in diet, 
leading to generation of reactive nitrogen species in 
the stomach. In considering the biological importance 
of dietary antioxidants, attention has usually focussed 
on those that are absorbed through the gastrointesti- 
nal tract into the rest of the body. In the present paper 
we develop the argument that the high levels of anti- 
oxidants present in certain foods (fruits, vegetables, 
grains) and beverages (e.g. green tea) play an impor- 
tant role in protecting the gastrointestinal tract itself 
from oxidative damage, and in delaying the develop- 
ment of stomach, colon and rectal cancer. Indeed, car- 
otenoids and flavonoids do not seem to be as well 
absorbed as vitamins C and E. Hence their concentra- 
tions can be much higher in the lumen of the GI tract 
than are ever achieved in plasma or other body tis- 
sues, making an antioxidant action in the GI tract 
more likely. Additional protective mechanisms of 
these dietary constituents (e.g. effects on intercellular 
communication, apoptosis, cyclooxygenases and tel- 
omerase) may also be important. 

* Corresponding Author. 
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I N T R O D U C T I O N  

The importance of endogenous  and diet-derived 
antioxidants to the maintenance of h u m a n  health 

in the face of cont inuous assault by  reactive oxy- 
gen /n i t r ogen / ch lo r ine  species seems indisputa- 
ble [11. For the diet-der ived antioxidants,  

particular at tention has focussed on vi tamin C 
and on the various tocopherols  and tocotrienols 

that make up  vi tamin E: bo th  vi tamins C and E 
are in general well-absorbed f rom the gastroin- 
testinal tract [2'3]. By contrast, carotenoids are 

absorbed from the h u m a n  gut  only to a l imited 
extent, and some undergo  cleavage in the gut, 
eventual ly  yielding vi tamin A [4]. In fact, the only 
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820 B A R R Y  H A L L I W E L L  e,' a/. 

established physiological role of carotenoids in 
humans is as vitamin A precursors I4]. Caroten- 
oids have important antioxidant effects within 
plants, largely as quenchers of excited chloro- 
phyll states and of singlet 0 2 (reviewed inl51). 
Carotenoids can scavenge singlet 0 2 and several 

[4 6] other reactive species in vitro ' , but the impor- 
tance of carotenoids as antioxidants after uptake 
into human tissues is far from established, and 
may be insignificant since their tissue levels may 
be too low to exert antioxidant effects I4'71. If 
some carotenoids do exert effects that limit the 
development of certain diseases in humans, a 
conce~t for which supportive evidence is grow- 
ing I8'91, it seems more likely to the authors that 
they are affecting cell signalling mechanisms, 
intercellular communication, or gene expression 
rather than by acting as "bulk" antioxidants [4' 
10] 

Foods and beverages contain a wide range of 
antioxidants, many of which are phenolic or 
polyphenolic compounds that have powerful 
antioxidant activities in vitro (reviewed in[ill). 
The flavonoids have been a special focus of 
attention Ill], but other phenolics may also 
important I12]. Evidence for the uptake of signifi- 
cant amounts of phenolic compounds through 
the gastrointestinal tract in humans has come 
from measurements of both the compounds 
themselves and of their metabolites in plasma 
and urine [11' 13-201. The levels of phenolics and 
their metabolites measured in plasma in some 
studies are theoretically sufficient for them to be 
able to exert antioxidant actions, in that similar 
levels of phenolics can scavenge free radicals or 
prevent peroxidation of low-density lipoproteins 
(LDL) in vitro Ill-231. However, data are conflict- 
ing on whether levels of oxidative damage to 
DNA, lipids or proteins in human tissues, or 
rates of LDL peroxidation in vivo, are affected by 
dietary flavonoids [19' 21-251. 

However, something may be being over- 
looked in these studies of uptake, urinary excre- 
tion and plasma concentration - that the 
gastrointestinal (GI) tract itself could be a major 

site of pro-oxidant and antioxidant actions 12°1. 
Compounds that are only present in body fluids 
at pM levels may be present in the stomach and 
lumen of the intestines at much greater concen- 
trations. The GI tract is an important site of dis- 
ease: inflammation (gastritis, H. priori infection, 
Crohn's disease and ulcerative colitis are exam- 
ples) and cancer (especially colon and rectum) 
are major human health problems. All these con- 
ditions involve reactive species and oxidative 
damage during their progression and perhaps 
even in their origin [1'26-3°1. 

PROBLEMS OF THE GASTROINTESTINAL 
TRACT 

The GI tract has to absorb essential nutrients, 
prevent the passage of bacteria into the blood, 
and in general act as a barrier between the gut 
contents and the rest of the body. Its lining is 
constantly renewed, and this constant cell prolif- 
eration makes it a ready target for genotoxins I291. 
One protective mechanism may be the constant 
shedding of oxidatively-damaged cells. The GI 
tract is also exposed to pro-oxidants to a degree 
unprecedented in other body tissues. Some 
examples - 

(1) Ingested food frequently contains copper 
and iron ions. Iron is usually present as insol- 
uble Fe(III) salts but sometimes as elemental 
iron, which is used as an iron supplement in 
certain foods. Gastric acid solubilizes ferric 
and metallic iron, which can then be reduced 
by ascorbate and other reductants to Fe 2+. 
Reducing agents such as ascorbate and GSH 
may be present in the food, but ascorbate is 
also secreted into gastric juice I3°l, perhaps in 
order to facilitate iron uptake by reducing 
Fe(III) to the more-easily-absorbed Fe 2+ form, 
among other reasons. Thus the stomach, duo- 
denum and upper small intestine may be tar- 
gets for damage by hydroxyl radical (OH')  
generated by Fenton chemistry from ascor- 
bate/Fe2+mixtures[1, 31, 321, at least until the 
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OXIDANTS, ANTIOXIDANTS AND THE GI TRACT 821 

Fe 2+ can be absorbed by the gut and safely 
sequestered into protein-bound forms inca- 
pable I311 of generating OH' .  Diet-derived 
copper ions could also generate OH" from 
ascorbate [331, and multivitamin pills contain- 
ing iron and copper salts together with ascor- 
bate may deliver a similar pro-oxidant 
challenge [32-341. Ascorbate/Fe 2+ and ascor- 
ba te /Cu 2÷ mixtures can generate OH" with- 
out it being necessary to add H202, but 
addition of H20 2 enhances OH" genera- 
tion [311. Hydrogen peroxide has been 
detected in several foods (reviewed in[351), 
and high levels (sometimes over 100 pM) are 
found in certain beverages, including teas, 
ground coffees and (especially) instant cof- 
fees I36]. Indeed, OH" is generated within 
instant coffee, and the conversion of caffeine 
to 8-hydroxycaffeine has been used to moni- 
tor this [371. 

(2) Release of haem from haem proteins, 
especially in meat-rich diets, may be another 
source of pro-oxidants since haem and haem 
proteins are powerful stimulators of lipid 
peroxidation I1'38]. Mixtures of haem and 
haem proteins with H20 2 and other perox- 
ides are powerful pro-oxidants (reviewed 
in[1'35]), and unabsorbed haem may contrib- 
ute to pro-oxidant effects in the colon I39'40]. 

(3) Lipids in ingested foods are frequently 
oxidized to some degree, both by the action 
of lipoxygenase enzymes (e.g. in fish and 
some plants) and by thermally-induced 
and / or transition metal ion-catalyzed 

[35 41 non-enzymic peroxidation (reviewed in ' ' 
421). There is evidence that some oxidized lip- 
ids can be absorbed I41M5]. Thermal and /o r  
metal ion-catalyzed decomposition of lipid 
peroxides can generate cytotoxic aldehydes, 
including malondialdehyde and 4-hydroxy- 
2-trans nonenal. These can damage proteins 
and DNA, some of the products of their reac- 
tions with DNA being mutagenic I46'471. Tran- 
sition metal ions and haem compounds  
decompose peroxides to peroxyl and alkoxyl 

radicals, which are propagators of the chain 
reaction of lipid peroxidation H and can also 
damage DNA and proteins. High levels of 
cytotoxic aldehydes have been detected in 
oxidized cooking oils and some other foods, 
and some of these aldehydes can be absorbed 
through the gut [48'49]. Lipid peroxides in 
foods can interact with any free metal ions, 
haem, and haem proteins present to propa- 
gate lipid peroxidation. Although the degree 
of absorption of oxidized lipids and carbon- 
yls derived from them into the plasma 
appears limited I41'44'451, the cells of the GI 
tract will be exposed to the full force of these 
toxic agents. Indeed, there is considerable 
evidence that dietary fat is a risk factor for 
cancer development; the presence of perox- 
ides and their decomposition products could 
contribute to this by promoting mutation, 
activation of dietary carcinogens and abnor- 
mal cell proliferation [39' 40, 46, 50, 51] 

(4) Foods can contain not only peroxides and 
aldehydes, but also isoprostanes I521. Some 
isoprostanes can exert significant biological 
effects, including vasoconstriction, and sev- 
eral are cytotoxic (reviewed in[53-55]). 
(5) Oxidized cholesterol can be present in 
foods and some cholesterol oxidation prod- 
ucts may be absorbed [42'56]. Cholesterol oxi- 
dation products are widely reported as 
cytotoxic[42,561 

(6) Human  saliva is rich in nitrite; levels up  
to, and sometimes over, 100 pM have been 
reported [57-591. Nitrite is a widely used food 
preservative, especially in canned meats and 
sausages (reviewed in[6°l). When nitrite con- 
tacts gastric acid, HNO 2 and oxides of nitro- 
gen will be produced [581. Secondary amines 
in food can react with HNO 2 and be con- 
verted to nitrosamines (reviewed in [61' 62]). 
Nitrous acid can also deaminate DNA bases, 
producing mutagenic lesions. Conversion of 
adenine to hypoxanthine, and of guanine to 
xanthine and oxanine, are the major reactions 
(reviewed in[631). The potential health risks of 
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822 BARRY HALLIWELL et al. 

dietary nitrites have been debated for many 
years, but no consensus has emerged, and 
their powerful abilities to prevent the growth 
of pathogenic bacteria ensure their continued 
use [60'61]. Yet nitrite at levels that enter the 
gastric juice can be highly cytotoxic at low 
pH, and even at pH 7.4 NO 2- can cause slow 
DNA base deamination when added to cells 
in culture [63' 64] 

(7) A large part of the immune system resides 
in the GI tract, and several of the cells 
involved can respond to challenge with bac- 
teria or with certain food antigens, to produce 
reactive species [65~91. 

(8) Food can contain many pro-oxidants other 
than peroxides or transition metals. For 
example, several phenolic compounds in 
foods can oxidize to give reactive species, an 
example being hydroxyhydroquinone in cof- 
fee [7°1. Autoxidation of phenols is facilitated 
by transition metal ions. Indeed, shortly after 
drinking instant coffee the urinary concentra- 
tion of H20 2 increases in humans [71]. Exam- 
ples of potentially pro-oxidant food additives 
include the food colourant carminic acid [72], 
and sulphite, a widely-used preservative [731. 
Sulphite itself is essentially a reducing 
agent [731, but exposure of sulphite to iron or 
copper ions, to peroxynitrite, or to reactive 
oxygen species can cause its conversion to 
highly-oxidizing cytotoxic radicals such as 
S O  3"- and SO5 °- [69}, [74-76J. 

ANTIOXIDANT DEFENCES OF THE GUT 

Like all animal tissues, the gastrointestinal tract 
contains superoxide dismutase, catalase and glu- 
t,athione peroxldase enzymes, including an 

intestinal form' of glutathione peroxidase 144'77- 
80]. Some of the SOD and glutathione peroxidase 
activities of the intestine and colon appear to be 
located extracellularly, at the external cell sur- 
face [78'8°}. These extracellular enzymes presuma- 
bly help to detoxify reactive species reaching the 
gut surface from the food. Intracellular glutath- 
ione peroxidases may remove the bulk of perox- 
ides present in absorbed lipids [44}, which 
accounts for the observation that even 
highly-peroxidized lipids are not very poisonous 
to animals, although some deleterious effects are 
exerted [44'45]. Lymphoid tissues seem particu- 
larly affected [45f, which makes one wonder how 
lipid oxidation products might affect the func- 
tion of the gut immune system. However, some 
lipid peroxides escape metabolism by the GI 
tract[41, 43, 44] and enter the circulation. Alde- 
hydes in food are presumably extensively 
metabolised by conjugation with GSH, catalyzed 
by glutathione-S-transferases, in the gut [81-831, 
but again there is evidence that some cytotoxic 
aldehydes may pass into the circulation [48'491. 
Several dietary constituents, including flavo- 
noids and sulphoraphane, can increase levels of 
GST in the GI tract [83- 85] 

TABLE I Possible Interactions Of "Chelating"* Phenolic Compounds With Transition Metals 

® 

® 

® 

The metal ion is chelated in a redox-inactive form: its reduction potential and /o r  accessibility is altered so as to disfa- 
vour metal ion-catalyzed OH" formation from H202 and /o r  metal ion-catalyzed decomposition of lipid and protein per- 
oxides to peroxyl and alkoxyl radicals. 

The metal ion is chelated in a redox-active form, but on addition of peroxides any reactive radicals generated are scav- 
enged by the phenol and do not escape into free solution to cause damage to other biomolecules. 

The metal ion undergoes redox interactions with the phenol, being reduced as the phenol is oxidized This can lead to 
pro-oxidant effects in certain assay systems. 

* Those with at least two adjacent electron-donating groups, enabling them to chelate metal ions. 
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OXIDANTS, ANTIOXIDANTS AND THE GI TRACT 823 

TABLE II ICs0 Values for Inhibition by Phenolic C o m p o u n d s  of Hypoxan th ine /Xan th ine  Formation in DNA Exposed to Nitrite 
at pH 3 

Phenol I C so ( p2VI ) 

Hypoxan thine Xan thine 

Caffeic Acid 383 _+ 66 254 _+ 168 

Catechin 107 _+ 24 126 + 15 

Epicatechin 351 +_ 184 139 + 37 

Epigallocatechin 384 + 36 105 _+ 7 

Epigallocatechin Gallate 187 ± 48 195 + 6 

Quercetin 390 + 16 398 + 94 

Experiments  were  carried out  as described in the legend to Figure 2. 

The intracellular antioxidant defences within 
the cells of the GI tract cannot offer much protec- 
tion against external effects of pro-oxidants, such 
as OH' ,  H202, lipid peroxides, aldehydes, 
HNO 2 and oxides of nitrogen. The significance 
of the extracellular enzymes [78-8°] in offering 
protection requires further investigation. The 
mucus layer lining the whole GI tract has a high 
capacity to absorb reactive species (especially 
OH" and possibly HOC1, HNO 2 and 
ONOOH)[86'871 and may have a major protective 
role, stopping many of the most-reactive and 
damaging species from reaching the cells under- 
neath 186]. Indeed, excess intake of Fe 2+ appears 
to cause damage only when taken in sufficient 
quantities to erode the mucosal layer [88]. 

A ROLE FOR DIETARY ANTIOXIDANTS? 

Foods and beverages deliver a complex mixture 
of antioxidants and pro-oxidants to the GI tract. 
It is known that diets rich in fruits and vegeta- 
bles are associated with decreased risks of gas- 
tric, colon and rectal cancer. There are many 
anti-cancer agents present in plant-derived 
foods, but considerable attention has focussed 
on the role played by antioxidants, especially 
vitamin C, vitamin E, carotenoids and flavo- 
noids. These have often been suggested to be 
able to delay or prevent cancer development by 

being absorbed from the GI tract into the plasma 
and from there into the tissues, where they 
might decrease levels of oxidative DNA damage. 
However, evidence that these antioxidants do 
decrease oxidative DNA damage in vivo is sparse 
(reviewed in [7' 891). Indeed it is possible to dem- 
onstrate decreased oxidative DNA damage after 
feeding fruits and vegetables to humans under 
conditions where supplements of vitamins E, C, 
carotenoids and the flavonoid quercetin have no 
effect on such damage [7'89]. 

What has been largely ignored up until now is 
the potential for extracellular antioxidant protec- 
tive effects within the GI tract• For example, fla- 
vonoids and other phenolics are powerful 
scavengers of OH' ,  peroxyl radicals, HOC1 and 
ONOO- in vitro, but many such studies in vitro 
use concentrations much higher than are likely 
to be achieved in plasma or body tissues 
(reviewed in[11]). A similar comment may be 
applied to the ability of carotenoids to scavenge 

• [ 6 ]  reactive oxygen and nitrogen species . How- 
ever, when foods rich in phenolics and caroten- 
oids are eaten, and beverages rich in these 
substances are drunk, substantial levels of these 
antioxidants are delivered to the GI tract. The 
stomach probably encounters the highest levels, 
but there will be substantial exposure of the rest 
of the GI tract (Figure1), and considerable 
amounts of unabsorbed phenolics and caroten- 
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824 BARRY HALLIWELL e t  a l .  

STOMACH 

High concentrations of ascorbate, 

vitamin E, flavonoids, other phenolics, 

carotenoids (if f r u i t / v e g e t a b l e ~ g r a i n  - rich 

diets are consumed). 

Scavenge RNS from HNO2, OH" 

from Fe/ascorbate interactions etc. 

Some phenolics bind Fe z+ , to 

decrease its ability to cause free radical 

generation. 

> [ INTESTINE 

[ duodenum ] ~ ~ 
vitamin C completely absorbed* 

vitamin E largely absorbed +* 

Some carotenoids cleaved by eccentric 

and excentric mechanisms, eventually to yield 

vitamin A. 

Some carotenoids, flavonoids and other 

phenolic compounds absorbed. 

> ] COLON/RECTUM 

Little vitamin C present*. 

Limited vitamin E present *+. 

Considerable amounts of unabsorbed 

flavonoids, other phenolics, carotenoids (if 

diet rich in these). 

Scavenging/metal binding/other actions 

may help to delay colon/rectal cancer 

development by protecting by external 

effects on colonic/rectal epithelium. 

FIGURE 1 Dietary Antioxidants And  The Gastrointestinal Tract 
* Except when  supplements  are taken. This diagram refers to normal dietary intake. 
+There is considerable inter-subject variability in the efficiency of GI uptake of vitamin E 112. RNS-reactive nitrogen species 

oids will pass into the colon. Hence scavenging 
of free radicals and other reactive species within 
the GI tract becomes feasible. Of course, such 
scavenging might generate oxidized, chlorin- 
ated, nitrosylated or nitrated products from the 
antioxidants [90-94], and these products could 
themselves have biological effects, an area which 
remains to be explored. In addition, many phe- 
nolic compounds interact with iron, often in 
complex ways, as summarized in Table I. Over- 
all, the effects are probably usually antioxidant 
(Chapter 2 in referenceDlJ). Much unabsorbed 
dietary iron enters the faeces, where it could rep- 
resent a pro-oxidant challenge to the colon and 
rectum [39'95-97]. Indeed, diets rich in fat and low 
in fibre may aggravate this pro-oxidant effect [97]. 
Phenolics, by chelating iron, may help to allevi- 
ate pro-oxidant actions of colonic iron (Figure 1). 
If phagocytes in the GI tract become activated, 
diet-derived antioxidants may help to scavenge 
such extracellular species as 02 °-, H202, ONOO- 
and HOC1 that can be produced [11' 90-941 

although again the potential biological effects of 
any oxidized, nitrosytated, nitrated or chlorin- 

ated antioxidants so produced must be consid- 
ered. 

Studies have shown that ascorbate can 
decrease nitrosamine formation from secondary 
amines, apparently by scavenging reactive nitro- 
gen species [98'99I. Several phenolic compounds 
found in fruits, vegetables and certain beverages 
can prevent nitration of guanine in DNA by 
ONOO- and deamination of DNA bases by 
HNO2163, 941. For example, Figure 2 shows that 
epicatechin and epigallocatechin gallate are 
powerful inhibitors of DNA base deamination 
under the pH conditions likely to exist in the 
human stomach. Inhibition of DNA base deami- 
nation at low levels of these phenolics is very 
variable, as indicated by the size of the error bars 
on the figures, but becomes clearer at higher con- 
centrations. Most of the phenolic compounds 
inhibited the deamination almost completely at 
about 1 mM. With some, such as caffeic acid and 
epicatechin, complete inhibition of the formation 
of hy,~oxanthine was not achieved up to 2 
mM [631. The mechanism of the inhibition may 
involve oxidation or nitration/nitrosation of the 
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OXIDANTS, ANTIOXIDANTS AND THE GI TRACT 825 

110 ; HYPOXANTHINE 
9 0  _,,_ X A N T H I N E  - 

70 
I, 

50 

30 

10 

-10 ~ I 1 i I 

2500 0 5 0 0  1000  1 5 0 0  2 0 0 0  

EPIGALLOCATECHIN GALLATE (pM) 

110 -,- H Y P O X A N T H I N E  

90 -*-_X ANTHINE_ 

¢~ 50 

lO 

-10  , , i 1 

0 500  1000 1500  2 0 0 0  2 5 0 0  

EPICATECHIN (pM) 
FIGURE 2 Inhibition of DNA base deamination by (A) epigallocatechin gallate and (B) epicatechin. Data are mear~+SD, n=3. 
Calf thymus DNA (0.5 mg/ml)  was incubated with sodium nitrite (0.5 mM) at pH 3 (50 mM potassium phosphate buffer) in the 
presence of various concentrations of phenolic compounds in a total volume of I ml. The incubation was carried out at 37°C for 
2 hours. The DNA concentration in the reaction mixture was determined following an exhaustive dialysis against water (24 
hours with two changes). After freeze-drying, the DNA (100 ~g) was hydrolysed in 60% formic acid (0.5 ml) at 145°C for 45 min. 
The acid was removed by freeze-drying and the residue was dissolved in 1 ml of water for HPLC analysis. The deaminated 
bases were separated on a Hypersil C18 column (250 x 4.6 mm, 5 p,m) by isocratic elution with potassium phosphate buffer (50 
mM, pH 3) containing 2 mM triethylamine and 0.05 mM EDTA and assayed as described in I63] 
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826 BARRY HALLIWELL et al. 

phenolic compounds as a result of scavenging 
reactive nitrogen species [94' 100-102] Nitrosated 
phenolics could also conceivably react with 
DNA bases, but probably more slowly than does 
HNO 2. These events could contribute to the 
large variations in the inhibition of the 
nitrite-dependent deamination at low levels of 
phenolics, but high levels of phenolics were 
clearly protective (Figure 2). Some evidence for 
binding of several phenolics to DNA was 
obtained in our studies (data not shown). Table 
II summarizes IC50 values for inhibition of DNA 
deamination by several dietary phenols. Since 
many foods and beverages of plant origin are 
rich in phenolic compounds, the concentrations 
which achieve protection can easily be achieved 
in the stomach and probably in the rest of the GI 
tract after a meal rich in plant products. 

CONCLUSION 

The essence of our argument in this paper is that, 
if flavonoids and carotenoids exert antioxidant 
effects in the human body, the place where they 
are most likely to do so is within the GI tract. A 
role for ascorbate and tocopherols as scavengers 
of reactive species is also feasible in the GI tract, 
particularly in subjects consuming vitamin E 
supplements, when considerable amounts of 
tocopherols may remain unabsorbed to reach the 
colon [1121. Tocopherols can react not only with 
reactive oxygen species such as peroxyl radicals, 
but also with reactive nitrogen species (reviewed 
in [1001). 

Of course, it must not be assumed that all (or 
even any) of the protective effects of dietary anti- 
oxidants in the GI tract are necessarily due to 
antioxidant actions. Some phenolics induce 
enzymes that metabolise carcinogens, some 
inhibit protein kinases, telomerase, angiogenesis, 
lipoxygenases, cyclooxygenases or the growth of 
Helicobacter pylori, and some might l]romote 
apoptosis of malignant cells in the colon 11°3-1111. 
For example, COX-2 appears important in the 

development of colon cancer and its inhibition 
could be one anti-cancer effect of dietary pheno- 
lics[107, 1111. Carotenoids modulate intercellular 
communication and gene expression [10[. Never- 
theless, the powerful antioxidant activities of 
many of these compounds, the high levels of 
them that are present in fruits and vegetables 
and the fact that reactive species are implicated 
not only in cancer development but also in the 
progression of most other diseases make it very 
likely that antioxidant mechanisms are impor- 
tant in maintaining the health of the GI tract. 
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